Abstract: | The hexanuclear thioguanidine mixed‐valent copper complex cation [Cu6(NGuaS)6]+2 (NGuaS = o‐SC6H4NC(NMe2)2) and its oxidized/reduced states are theoretically analyzed by means of density functional theory (DFT) (TPSSh + D3BJ/def2‐TZV (p)). A detailed bonding analysis using overlap populations is performed. We find that a delocalized Cu‐based ring orbital serves as an acceptor for donated S p electrons. The formed fully delocalized orbitals give rise to a confined electron cloud within the Cu6S6 cage which becomes larger on reduction. The resulting strong electrostatic repulsion might prevent the fully reduced state. Experimental UV/Vis spectra are explained using time‐dependent density functional theory (TD‐DFT) and analyzed with a natural transition orbital analysis. The spectra are dominated by MLCTs within the Cu6S6 core over a wide range but LMCTs are also found. The experimental redshift of the reduced low energy absorption band can be explained by the clustering of the frontier orbitals. © 2017 Wiley Periodicals, Inc. |