首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescent Polypyrrole Nanospheres – Synthesis and Properties of “Wireless” Redox Probes
Abstract:In this work a novel concept of monitoring of occurrence of redox reactions between conducting polymer nanospheres and redox species in a solution is proposed. The redox process is monitored in the emission mode (without wiring of the probe to an electrochemical measuring set‐up) as a change in emission spectrum of a dye (not participating in the redox process itself) but reporting the alteration of properties of highly sensitive conducting polymer nanoparticles. This approach is possible due to applied unique method of synthesis of conducting polymers nanospheres of highly active, unblocked surface. Thus the nanospheres redox state is affected by the solution redox potential, leading to change of their properties. If solvatochromic probe of sufficiently high brightness (pyrene) is present in nanospheres, a redox reaction between the conducting polymer and solution can be observed as change of emission spectrum of the probe. Thus a localized redox potential optical probe can be obtained. The emission properties of the dye incorporated were preserved in the nanospheres, moreover, the emission spectrum of the probe was affected by the change in redox potential of the solution, thus influencing the redox state and ultimately the properties of the conducting polymer. The emission changes observed were dependent on ion‐exchange properties of polypyrrole, i.e. depending on the dopant ions present in the polymer, the sensitivity of the optical probe can be tuned.
Keywords:conducting polymer nanoparticles  fluorescent nanoparticles  electro-optical transducers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号