首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fragmentation characteristics of hydroxycinnamic acids in ESI‐MSn by density functional theory
Abstract:This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI‐MSn) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi‐molecular ions (M ? H]?) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m‐phenolic hydroxyl > p‐phenolic hydroxyl > o‐phenolic hydroxyl; and (2) ortho effect always occurred in o‐dihydroxycinnamic acids (o‐diHCAs), i.e. one phenolic hydroxyl group offered H+, which combined with the other one to lose H2O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO2. The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI‐MS. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:hydroxycinnamic acids  density functional theory  electrospray ionization  negative ion  proton transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号