首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemically Controlled Ion‐exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions
Abstract:The electrochemically controlled ion‐exchange properties of multi‐wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion‐exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion‐exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X‐ray photoelectron spectroscopy (XPS).
Keywords:electrochemically controlled ion-exchange  carbon nanotubes  polypyrrole  electrochemical deposition  anion exchange
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号