首页 | 本学科首页   官方微博 | 高级检索  
     


Addition reactions of nitrones on the reconstructed C(1 0 0)-2 × 1 surfaces
Authors:Zhiguo Wang   Honglun Wang   Yongjun Liu  Yourui Suo
Affiliation:

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

bNorthwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China

Abstract:In this paper, the reactions of nitrone, N-methyl nitrone, N-phenyl nitrone and their hydroxylamine tautomers (vinyl-hydroxylamine, N-methyl-vinyl-hydroxylamine and N-phenyl-vinyl-hydroxylamine) on the reconstructed C(1 0 0)-2 × 1 surface have been investigated using hybrid density functional theory (B3LYP), Møller–Plesset second-order perturbation (MP2) and multi-configuration complete-active-space self-consistent-field (CASSCF) methods. The calculations showed that all the nitrones can react with the surface “dimer” via facile 1,3-dipolar cycloaddition with small activation barriers (less than 12.0 kJ/mol at B3LYP/6-31g(d) level). The [2+2] cycloaddition of hydroxylamine tautomers on the C(1 0 0) surface follows a diradical mechanism. Hydroxylamine tautomers first form diradical intermediates with the reconstructed C(1 0 0)-2 × 1 surface by overcoming a large activation barrier of 50–60 kJ/mol (B3LYP), then generate [2+2] cycloaddition products via diradical transition states with negligible activation barriers. The surface reactions result in hydroxyl or amino-terminated diamond surfaces, which offers new opportunity for further modifications.
Keywords:Nitrone   Carbon   Surface chemical reaction   Density functional calculations   Ab initio quantum chemical method and calculations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号