首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-nuclearity Ce/Mn and Th/Mn cluster chemistry: preparation of complexes with [Ce4Mn10O10(OMe)6]18+ and [Th6Mn10O22(OH)2]18+ cores
Authors:Mishra Abhudaya  Tasiopoulos Anastasios J  Wernsdorfer Wolfgang  Abboud Khalil A  Christou George
Institution:Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
Abstract:The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号