首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chain initiation on the soraphen-producing modular polyketide synthase from Sorangium cellulosum.
Authors:C J Wilkinson  E J Frost  J Staunton  P F Leadlay
Institution:Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, UK.
Abstract:BACKGROUND: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete. RESULTS: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea. CONCLUSIONS: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete-myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号