首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry
Authors:Barry?D?Davis  Email author" target="_blank">Jennifer?S?BrodbeltEmail author
Institution:Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA.
Abstract:Metal complexation and tandem mass spectrometry were used to differentiate C- and O-bonded flavonoid monoglucoside isomers. Electrospray ionization of solutions containing a flavonoid glycoside and a metal salt led to the generation of the key M(II) (L) (L-H)](+) complexes, where M is the metal ion and L is the flavonoid glycoside. Thirteen flavonoid monoglucosides were examined in combination with Ca(II), Mg(II), Co(II), Ni(II), and Cu(II). Collisional activated dissociation (CAD) of the M(II) (L) (L-H)](+) complexes resulted in diagnostic mass spectra, in contrast to the CAD mass spectra of the protonated, deprotonated, and sodium-cationized flavonoid glucosides. Five common sites of glycosylation could be predicted based on the fragmentation patterns of the flavonoid glucoside/magnesium complexes, while flavonoid glucoside/calcium complexes also were effective for location of the glycosylation site when MS(3) was employed. Cobalt, nickel and copper complexation had only limited success in this application. The metal complexation methods were also applied for characterization of a flavonoid rhamnoside, and the dissociation pathways of the metal complexes indicate that flavonoid rhamnosides have distinctive dissociation features from flavonoid glucosides.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号