首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development and characterization of laser surface cladding (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper
Authors:Hua Yan  Peilei Zhang  Zhishui Yu  Chonggui Li  Ruidi Li
Institution:1. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi''an 710072, China
Abstract:To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper using a cladding interlayer of Ni–30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni–30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号