首页 | 本学科首页   官方微博 | 高级检索  
     

2维静磁场多参量微动粒子群优化算法
引用本文:范俊杰, 张兆传. 2维静磁场多参量微动粒子群优化算法[J]. 强激光与粒子束, 2010, 22(01).
作者姓名:范俊杰  张兆传
作者单位:1.中国科学院 电子学研究所 高功率微波源与技术重点实验室, 北京 1 001 90
摘    要:提出一种微动粒子群优化算法,针对2维静磁场多参量优化问题,在给出轴上目标轴向磁感应强度分布曲线的前提下,可以得到趋近于该分布曲线的磁结构。该算法分为前后两阶段:第一阶段采用前后试探法(微动),同时也参照最优粒子的信息;第二阶段采用基本粒子群优化算法。微动粒子群优化算法可以发挥多核计算机在工程设计上的潜力,而且即使粒子数目很少,也能不断趋近目标解。

关 键 词:微动粒子群优化算法   微动   磁感应强度   多参量优化

Jiggle particle swarm optimization algorithm for 2D magnetostatic multi-parameter problem
fan junjie, zhang zhaochuan. Jiggle particle swarm optimization algorithm for 2D magnetostatic multi-parameter problem[J]. High Power Laser and Particle Beams, 2010, 22.
Authors:fan junjie  zhang zhaochuan
Affiliation:1. Key Laboratory of High Power Microwave Sources and Technologies,Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China
Abstract:A jiggle particle swarm optimization(JPSO) algorithm has been presented for the multi-parameter optimization of 2D magnetostatic problem. Given a target curve of axial magnetic flux density along the axis of symmetry, it can find rotating axisymmetric magnetic structures whose distribution curve of magnetic flux dnesity is close to the target one. This algorithm is divided into two phases. In the first phase, up-and-down test method (jiggle) is adopted with continuous reference to the best particle’s information. In the second phase, basic particle swarm optimization algorithm is adopted. The JPSO algorithm shows multi-core computer’s potential in engineering design multi-parameter optimization of 2D magnetostatic problems. Even if there is only a few particles, its successive results ca
Keywords:jiggle particle swarm optimization algorithm  jiggle  magnetic flux density  multi-parameter optimization
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号