首页 | 本学科首页   官方微博 | 高级检索  
     

追踪SrTiO3/CoP/Mo2C纳米纤维中的电荷转移路径以增强光催化产生太阳燃料
引用本文:王黎,李雨坤,吴超,李鑫,邵国胜,张鹏. 追踪SrTiO3/CoP/Mo2C纳米纤维中的电荷转移路径以增强光催化产生太阳燃料[J]. 催化学报, 2022, 0(2): 507-518. DOI: 10.1016/S1872-2067(21)63898-6
作者姓名:王黎  李雨坤  吴超  李鑫  邵国胜  张鹏
作者单位:郑州大学材料科学与工程学院, 河南郑州450001;郑州大学低碳环保材料智能设计国际联合中心, 河南郑州450001;华南农业大学农业部能源植物资源与利用重点实验室, 生物质工程研究所, 广东广州510642
基金项目:国家自然科学基金(51972287,U2004172,51502269);河南省优秀青年基金(202300410368);河南省高校骨干教师基金(2020GGJS009).
摘    要:光催化产生太阳燃料因其低成本和零碳排放而成为解决能源危机的研究热点,但光激发载流子对的快速体相复合是需要解决的根本问题.本文在钛酸锶(SrTiO3)纳米纤维上嵌入磷化钴(CoP)和碳化钼(Mo2C)构筑了双助催化剂体系.与纯SrTiO3纳米纤维和二元样品相比,双助催化剂体系显著提高了析氢和二氧化碳还原性能.双助催化剂体系有利于有效促进空间电荷分离并提高光催化性能.此外,SrTiO3与助催化剂之间形成肖特基结,使光激发电子从SrTiO3快速转移到助催化剂,实现了光激发电子的有效分离并延长了光激发电子寿命.通过原位辐照X射线光电子能谱测试(ISI-XPS)确定了SrTiO3和助催化剂之间的电子转移路线,根据紫外-可见漫反射光谱(UV-VisDRS)和紫外光电子能谱(UPS)提出了SrTiO3和助催化剂的能带结构.结果表明,双助催化剂促进了电荷分离并增强了光催化性能.扫描电镜、透射电镜、高分辨透射电镜及其对应的元素分布结果表明,成功构筑了双助催化剂体系,且助催化剂的引入未影响SrTiO3纳米纤维的结构.SrTiO3纯样品表现出较低的光催化产氢活性,引入CoP后产氢性能得到提升并在CoP负载量为6%时达到最高.电化学测试、光致发光测试和瞬态光电压测试表明,引入CoP后的复合样品电化学性能得到提升,表现出更及时的电荷分离、更低的起始电位、更低的载流子复合率以及更长的载流子寿命.进一步在SrTiO3纳米纤维上嵌入CoP和Mo2C,构筑双助催化剂体系,其光催化产氢活性显著提升.同时,得益于SrTiO3独特的能带位置,该双催化剂体系也表现出良好的二氧化碳还原性能.采用ISI-XPS,UPS,UV-VisDRS等研究了双助催化剂的催化机理以及电子转移路径.UPS和UV-VisDRS结果表明,SrTiO3具有较高的功函数,CoP的功函数较低,Mo2C的功函数位于SrTiO3和CoP之间,因此电子倾向于从SrTiO3的导带流向Mo2C再流向CoP,同时形成肖特基势垒使得电子难以流回SrTiO3,从而实现载流子的及时分离以及延长电子寿命.此外,ISI-XPS的结合能大小变化表明,电子是从SrTiO3流到Mo2C再流向CoP.综上,本文制备了双助催化剂修饰的SrTiO3纳米纤维,证明了CoP和Mo2C在改性宽带隙半导体中的作用,并证实了SrTiO3和助催化剂之间光激发载流子的有效空间分离,探索了光激发电子在双助催化剂体系间的流向,为后续研究提供了理论依据和探索思路.

关 键 词:双助催化剂  电子转移  肖特基结  静电纺丝  原位辐照XPS  光催化剂  太阳燃料

Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production
Li Wang,Yukun Li,Chao Wu,Xin Li,Guosheng Shao,Peng Zhang. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production[J]. Chinese Journal of Catalysis, 2022, 0(2): 507-518. DOI: 10.1016/S1872-2067(21)63898-6
Authors:Li Wang  Yukun Li  Chao Wu  Xin Li  Guosheng Shao  Peng Zhang
Affiliation:(School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China;State Centre for International Cooperation on Designer Low-Carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,Henan,China;Institute of Biomass Engineering,Key Laboratory of Energy Plants Resource and Utilization Ministry of Agriculture,South China Agricultural University,Guangzhou 510642,Guangdong,China)
Abstract:Photocatalytic solar fuel generation is currently a hot topic because of its potential for solving the energy crisis owing to its low cost and zero-carbon emissions. However, the rapid bulk recombina-tion of photoexcited carrier pairs is a fundamental disadvantage. To resolve this problem, we syn-thesized a dual cocatalysts system of cobalt phosphide (CoP) and molybdenum carbide (Mo2C) embedded on strontium titanate (SrTiO3) nanofibers. Compared with those of pristine SrTiO3 and binary samples, the dual cocatalysts system (denoted SCM) showed a significant improvement in the hydrogen evolution and CO2 reduction performance. Further, the structure of SCM effectively promoted spatial charge separation and enhanced the photocatalytic performance. In addition, the Schottky junction formed between the SrTiO3 and cocatalysts enabled the rapid transfer of photoex-cited electrons from SrTiO3 to the cocatalysts, resulting in effective separation and prolonged pho-toexcited electron lifetimes. The electron migration route between SrTiO3 and the cocatalysts was determined by in situ irradiation X-ray spectroscopy, and band structures of SrTiO3 and the cocata-lysts are proposed based on results obtained from UV-vis diffraction reflection spectroscopy and ultraviolet photoelectron spectroscopy measurements. On the basis of our results, the dual cocata-lysts unambiguously boosts charge separation and enhances photocatalytic performance. In sum-mary, we have investigated the flux of photoexcited electrons in a dual cocatalysts system and pro-vided a theoretical basis and ideas for subsequent research.
Keywords:Dual cocatalyst  Electron migration  Schottky junction  Electrospinning  In situ irradiation XPS  Photocatalyst  Solar fuel
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号