首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain-Dependent Carotenoid Productions in Metabolically Engineered <Emphasis Type="Italic">Escherichia coli</Emphasis>
Authors:Han Seung Chae  Kong-Hwan Kim  Sun Chang Kim  Pyung Cheon Lee
Institution:(1) Department of Molecular Science and Technology and Department of Biotechnology, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 443-749, South Korea;(2) Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Gwanhangno, Yusong-gu, Taejon, 305-701, South Korea;
Abstract:Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号