首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pulsed spark-discharge assisted synthesis of colloidal gold nanoparticles in ethanol
Authors:Kuo-Hsiung Tseng  Jen-Chuen Huang
Institution:(1) Department of Electrical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Da-An District, Taipei, 10608, Taiwan
Abstract:A green method, using pulsed spark-discharge (PSD) to synthesize gold nanoparticles (AuNPs) in ethanol, is studied in this article. Unlike conventional methods for metal nanoparticles synthesis, the PSD method does not require the addition of chemical surfactants and stabilizers. The size of PSD–AuNPs is examined by transmission electron microscopy, with a range 5–50 nm. The chemical compounds, crystal structure, and surface plasmon resonance of PSD–AuNPs are studied using energy dispersive X-ray spectroscopy, X-ray diffraction, and UV–Visible spectroscopy, respectively. Zeta potential analysis shows that a negative charge (−40 mV) on the surface of the PSD–AuNPs may be contributing to the stability of the suspension. During the gold electrodes discharge in the ethanol, under an intensive electric field and thermal energy, bulk metallic gold and ethanol may produce AuNPs and varieties of chemical derivatives, which are also studied by GC/MS and FTIR to investigate the suspension mechanism. The analysis results show that there is an oxidation reaction of ethanol occurring during the PSD process to produce ethanol derivatives, such as acetaldehyde, acetic acid, and ethyl acetate, which may modify the surface of AuNPs by coordination of oxygen atoms. However, only acetic acid can form a negative charge by the deprotonation of the carboxylic group of surface in ethanol, resulting in the creation of a repulsion force between the particles to form the stable colloid system. The experimental results indicate that PSD is an alternative green process to synthesize gold nanoparticles suspension in ethanol. Moreover, with a gold rod consumption rate of 15 mg/L, concentrations of gold nanoparticles ~9 ppm have been observed; therefore, the net production rate is around 60%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号