首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relation between configurational entropy and relaxation dynamics of glass-forming systems under volume and temperature reduction
Authors:Simone Capaccioli  Daniele Prevosto  Mauro Lucchesi  Masoud Amirkhani  Pierangelo Rolla
Institution:1. Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy;2. INFM-CNR, PolyLab, Largo B. Pontecorvo 3, I-56127 Pisa, Italy;1. Department of Materials Science, University of Erlangen-Nürnberg, Erlangen, Germany;2. Department for Glass and Ceramic Composites, Institute of Mineral Engineering, RWTH Aachen, Aachen, Germany
Abstract:The structural relaxation dynamics of two molecular glass-forming systems have been analyzed by means of dielectric spectroscopy, under cooling and compression conditions. The relation of the dynamic slowing down with the reduction of the configurational entropy, SC, as predicted by Adam and Gibbs (AG), was also investigated. As SC is not directly accessible by experiments, it was estimated, following a common procedure in literature, from the excess entropy Sexc of the supercooled liquid with respect to the crystal, determined from calorimetric and expansivity measurements over the same TP range of dynamics investigation. The AG relation, predicting linear dependence between the logarithmic of structural relaxation time and the reciprocal of the product of temperature with configurational entropy, was successfully tested. Actually, a bilinear relation between Sexc and SC was found, with different proportionality factors in isothermal and isobaric conditions. Using such results, we derived an equation for predicting the pressure dependence of the glass transition temperature, in good accordance with the experimental values in literature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号