首页 | 本学科首页   官方微博 | 高级检索  
     

土壤碱解氮含量可见/近红外光谱预测模型优化
引用本文:汪六三,鲁翠萍,王儒敬,黄伟,郭红燕,汪玉冰,林志丹,王键,蒋庆,宋良图. 土壤碱解氮含量可见/近红外光谱预测模型优化[J]. 发光学报, 2018, 39(7): 1016-1023. DOI: 10.3788/fgxb20183907.1016
作者姓名:汪六三  鲁翠萍  王儒敬  黄伟  郭红燕  汪玉冰  林志丹  王键  蒋庆  宋良图
作者单位:1. 中国科学院 合肥智能机械研究所, 安徽 合肥 230031;2. 合肥电子工程学院, 安徽 合肥 230037
基金项目:宁夏回族自治区科技厅项目(XD-XMBW-2016001);上海市农业委员会项目(沪农科推字(2016)第2-5-11号)资助
摘    要:可见/近红外光谱技术是土壤成分检测的有效工具。波长筛选对可见/近红外模型土壤属性的预测精度有重要影响。以宁夏吴忠地区75个水稻土样为研究对象,利用可见/近红外光谱技术采集土壤样品光谱,采用SPXY (Sample set partitioning based on joint X-Y distance)方法选取了校正集和预测集样本,比较了分别采用Savitzky Golay平滑(SG smoothing)、多元散射校正(Multiple scatter correction,MSC)、标准正态变量变换(Standard normal variate,SNV)3种预处理方法对光谱数据处理后建立土壤碱解氮偏最小二乘法模型和原始光谱数据建模的效果。在此基础上,分别采用遗传算法(Genetic gorithms,GA)、连续投影算法(Successive projections algorithm,SPA)、竞争性自适应重加权算法(Competitive adaptive reweighted Sampling,CARS)、随机蛙跳(Random frog,RF)进行波长筛选,最后应用偏最小二乘法建立基于不同波长筛选方法的土壤碱解氮含量预测模型。研究表明,由于仪器性能稳定,样品的颗粒度比较小和均匀,本次实验原始光谱数据建模效果最好;各种波长筛选方法均可有效减少参与建模的波长数,且连续投影算法优于全谱建模,所选波长数仅为全谱波长数的1%,其预测决定系数(R2)、预测均方根误差和相对分析误差值分别为0.726,3.616,1.906。这表明连续投影算法可以有效筛选水稻土碱解氮敏感波段,为土壤碱解氮传感器开发提供技术支持。

关 键 词:土壤  可见/近红外光谱  碱解氮  光谱预处理  波长筛选
收稿时间:2017-11-15

Optimization for Vis/NIRS Prediction Model of Soil Available Nitrogen Content
WANG Liu-san,LU Cui-ping,WANG Ru-jing,HUANG Wei,GUO Hong-yan,WANG Yu-bing,LIN Zhi-dan,WANG Jian,JIANG Qing,SONG Liang-tu. Optimization for Vis/NIRS Prediction Model of Soil Available Nitrogen Content[J]. Chinese Journal of Luminescence, 2018, 39(7): 1016-1023. DOI: 10.3788/fgxb20183907.1016
Authors:WANG Liu-san  LU Cui-ping  WANG Ru-jing  HUANG Wei  GUO Hong-yan  WANG Yu-bing  LIN Zhi-dan  WANG Jian  JIANG Qing  SONG Liang-tu
Affiliation:1. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China;2. Electronic Engineering Institute, Hefei 230037, China
Abstract:Visible/near infrared spectroscopy(Vis/NIRS) is an effective tool for soil component detection. Wavelength selection plays an important role in predicting the soil properties of the visible/near infrared(Vis/NIR) model. Taking the 75 paddy soil samples of Ningxia Wuzhong area as the research object, the Vis/NIR spectra of soil samples were collected. The sample set partitioning based on joint X-Y distance(SPXY) method was used to divide calibration set and prediction set samples. Three different preprocessing methods, namely, Savitzky Golay smoothing(SG smoothing), multiplicative scatter correction(MSC), and standard normal variate(SNV), were applied to pretreat the spectral data. Then, three soil available nitrogen content prediction models were established by partial least squares(PLS) regression. The consequences of the three models and the model using raw spectral data were compared. On this basis, the genetic algorithm(GA), successive projections algorithm(SPA), competitive adaptive reweighted algorithm(CARS) and Random Frog(RF) were used to select key wavelength variables. Finally, the soil available nitrogen content prediction models were established by partial least squares regression based on different wavelength selection methods. Research shows that, due to the stability of the instrument, relatively small and uniform of the sample particle size, raw spectral data is achieved the best consequence; various wavelength selection methods can effectively reduce the number of wavelengths in the model, and the continuous projection algorithm is better than full spectrum model, the selected wavelength number is only 1% of the number of full spectrum wavelength and its prediction coefficient of determination(R2), root mean square prediction error and relative error analysis values were 0.726, 3.616 and 1.906. The research shows that wavelength selection method by SPA could predict the available nitrogen content in the paddy soil, provide a reference for development of soil available nitrogen sensor.
Keywords:soil  visible/near infrared spectroscopy(Vis-NIRS)  available nitrogen  spectral pretreatment  wavelength selection
本文献已被 CNKI 等数据库收录!
点击此处可从《发光学报》浏览原始摘要信息
点击此处可从《发光学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号