首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO
Authors:Lee Hong-In  Sørlie Morten  Christiansen Jason  Yang Tran-Chin  Shao Junlong  Dean Dennis R  Hales Brian J  Hoffman Brian M
Institution:Department of Chemistry Education, Kyungpook National University, Daegu, 702-701, Korea. leehi@knu.ac.kr
Abstract:Improved 1H ENDOR data from the S(EPR1) intermediate formed during turnover of the nitrogenase alpha-195Gln MoFe protein with C2(1,2)H2 in (1,2)H2O buffers, taken in context with the recent study of the intermediate formed from propargyl alcohol, indicate that S(EPR1) is a product complex, likely with C2H4 bound as a ferracycle to a single Fe of the FeMo-cofactor active site. 35 GHz CW and Mims pulsed 57Fe ENDOR of 57Fe-enriched S(EPR1) cofactor indicates that it exhibits the same valencies as those of the CO-bound cofactor of the lo-CO intermediate formed during turnover with CO, Mo4+, Fe3+, Fe6(2+), S9(2-)(d43)](+1), reduced by m = 2 electrons relative to the resting-state cofactor. Consideration of 57Fe hyperfine coupling in S(EPR1) and lo-CO leads to a picture in which CO bridges two Fe of lo-CO, while the C2H4 of S(EPR1) binds to one of these. To correlate these and other intermediates with Lowe-Thorneley (LT) kinetic schemes for substrate reduction, we introduce the concept of an "electron inventory". It partitions the number of electrons a MoFe protein intermediate has accepted from the Fe protein (n) into the number transmitted to the substrate (s), the number that remain on the intermediate cofactor (m), and the additional number delivered to the cofactor from the P clusters (p): n = m + s - p (with p = 0 here). The cofactors of lo-CO and S(EPR1) both are reduced by m = 2 electrons, but the intermediates are not at the same LT reduction stage (E(n)): (n = 2; m = 2, s = 0) for lo-CO; (n = 4; s = 2, m = 2) for S(EPR1). This is the first proposed correlation of an LT E(n) kinetic state with a well-defined chemical state of the enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号