首页 | 本学科首页   官方微博 | 高级检索  
     


An implicit least squares algorithm for nonlinear rational model parameter estimation
Affiliation:Faculty of Engineering, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
Abstract:In this study a new insight into least squares regression is identified and immediately applied to estimating the parameters of nonlinear rational models. From the beginning the ordinary explicit expression for linear in the parameters model is expanded into an implicit expression. Then a generic algorithm in terms of least squares error is developed for the model parameter estimation. It has been proved that a nonlinear rational model can be expressed as an implicit linear in the parameters model, therefore, the developed algorithm can be comfortably revised for estimating the parameters of the rational models. The major advancement of the generic algorithm is its conciseness and efficiency in dealing with the parameter estimation problems associated with nonlinear in the parameters models. Further, the algorithm can be used to deal with those regression terms which are subject to noise. The algorithm is reduced to an ordinary least square algorithm in the case of linear or linear in the parameters models. Three simulated examples plus a realistic case study are used to test and illustrate the performance of the algorithm.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号