首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and experimental studies on combustion characteristics of porous coal char: Volume reaction model
Authors:Anup Kumar Sadhukhan  Parthapratim Gupta  Ranajit Kumar Saha
Institution:1. Department of Chemical Engineering, National Institute of Technology, Durgapur 713 209, West Bengal, India;2. Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India
Abstract:A generalized single‐particle model for the prediction of combustion dynamics of a porous coal char in a fluidized bed is analyzed in the present work using a volume reaction model (VRM). A fully transient nonisothermal model involving both heterogeneous and homogeneous chemical reactions, multicomponent mass transfer, heat transfer with intraparticle resistances, as well as char structure evolution is developed. The model takes into account convection and diffusion inside the particle pores, as well as in the boundary layer. By addressing the Stefan flow originated due to nonequimolar mass transfer and chemical reactions, this work enables a more realistic analysis of the combustion process. The model, characterized by a set of partial differential equations coupled with nonlinear boundary conditions, is solved numerically using the implicit finite volume method (FVM) with a FORTRAN code developed in‐house. The use of a FVM for solving such an elaborate char combustion model, based on the VRM, was not reported earlier. Experiments consisting of fluidized‐bed combustion of a single char particle were carried out to determine the internal surface area of a partially burned char particle and to enable model validation. Predicted results are found to compare well with the reported experimental results for porous coal char combustion. The effects of various parameters (i.e., bulk temperature and initial particle radius) are examined on the dynamics of combustion of coal char. The phenomena of ignition and extinction are also investigated. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 299–315, 2010
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号