首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Density functional investigation and bonding analysis of pentacoordinated iron complexes with mixed cyano and carbonyl ligands
Authors:John T Tsalavoutis  Michael P Sigalas
Institution:Laboratory of Applied Quantum Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
Abstract:The equilibrium structures and vibrational frequencies of the iron complexes Fe0(CN)n(CO)5?n]n? and FeII(CN)n(CO)5?n]2?n (n = 0–5) have been calculated at the BP86 level of theory. The Fe0 complexes adopt trigonal bipyramidal structures with the cyano ligands occupying the axial positions, whereas corresponding Fe2+ complexes adopt square pyramidal structures with the cyano ligands in the equatorial positions. The calculated geometries and vibrational frequencies of the mixed iron Fe0 carbonyl cyanide complexes are in a very good agreement with the available experimental data. The nature of the Fe? CN and Fe? CO bonds has been analyzed with both charge decomposition and energy partitioning analysis. The results of energy partitioning analysis of the Fe? CO bonds shows that the binding interactions in Fe0 complexes have 50–55% electrostatic and 45–50% covalent character, whereas in Fe2+ 45–50% electrostatic and 50–55% covalent character. There is a significant contribution of the π‐ orbital interaction to the Fe? CO covalent bonding which increases as the number of the cyano groups increases, and the complexes become more negatively charged. This contribution decreases in going from Fe0 to Fe2+ complexes. Also, this contribution correlates very well with the C? O stretching frequencies. The Fe? CN bonds have much less π‐character (12–30%) than the Fe? CO bonds. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010
Keywords:iron complexes  mixed cyano and carbonyl ligands  BP86  CDA  EPA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号