首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomic forces for geometry‐dependent point multipole and Gaussian multipole models
Authors:Dennis M Elking  Lalith Perera  Robert Duke  Thomas Darden  Lee G Pedersen
Institution:1. Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709;2. OpenEye Scientific Software, Santa Fe, New Mexico 87508;3. Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
Abstract:In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry‐dependent multipole models. In this study, atomic force expressions for geometry‐dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives equation image . The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen‐bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry‐dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry‐dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry‐dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry‐dependent multipole models. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010
Keywords:multipole  Gaussian multipole  force  torque  Wigner function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号