首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields
Authors:K Vanommeslaeghe  E Hatcher  C Acharya  S Kundu  S Zhong  J Shim  E Darian  O Guvench  P Lopes  I Vorobyov  A D Mackerell Jr
Institution:Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
Abstract:The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010
Keywords:empirical force field  drug design  computational chemistry  medicinal chemistry  molecular modeling  molecular dynamics  computer aided drug design
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号