首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio periodic study of the conformational behavior of glycine helical homopeptides
Authors:Anna Maria Ferrari  Bartolomeo Civalleri  Roberto Dovesi
Institution:Dipartimento di Chimica IFM, Università di Torino and NIS (Nanostructured Interfaces and Surfaces), Centre of Excellence, Via P. Giuria 7, 10125 Torino, Italy
Abstract:Representative helicoidal conformations of polyglycine infinite chains have been investigated by using periodic boundary conditions, the B3LYP hybrid functional, and large basis sets, by means of the CRYSTAL code. The exploitation of the helix roto‐translational symmetry permits to optimize at a relatively low cost the structure of systems whose unit cell contains more than 300 atoms, much larger than the one investigated till now. In the present calculations, the helix symmetry is exploited at three levels. First, for the automatic generation of the structure. Second, for the calculation of the one‐ and two‐electron integrals that enter into the Fock matrix definition. Only the irreducible wedge of the Fock matrix is computed. Finally, for the diagonalization of the Fock matrix, where each irreducible representation is separately treated. The efficiency and accuracy of the computational scheme are documented, by considering cells containing up to 47 glycine residues. Results are compared with previous calculations and available experimental data. The role of hydrogen bonding in stabilizing polyglycine conformers is also addressed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010
Keywords:polyglycine  helix  amino acids structure  secondary protein structure  exploitation of symmetry  quantum mechanical calculations  CRYSTAL code
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号