首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction of hydroquinone with hematite; I. Study of adsorption by electrochemical-scanning tunneling microscopy and X-ray photoelectron spectroscopy
Authors:Stack Andrew G  Eggleston Carrick M  Engelhard Mark H
Institution:Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071-3006, USA. astack@ucdavis.edu
Abstract:The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with approximately 1.1 QH(2)/nm(2), but can be fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号