首页 | 本学科首页   官方微博 | 高级检索  
     


Computations on the A-X transition of isoprene-OH-O2 peroxy radicals
Authors:Dibble Theodore S
Affiliation:Chemistry Department, State University of New York-Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, USA. tsdibble@syr.edu
Abstract:Calculations are carried out on the A state of HO2, CH3O2, and CH3CH2O2 and 10 isomers and conformers of the isoprene-OH-O2 peroxy radicals derived from OH addition to isoprene (2-methyl-1,3-butadiene). In addition to calculating vertical and adiabatic excitation energies, we consider the effect of excitation on molecular structure, and examine the OO stretching frequencies, which are known to be major features in the absorption spectra of the A states of the smaller radicals. The two methods used are the configuration interaction with single excitations (CIS) method and time-dependent density functional theory (TD-DFT), both with a range of basis sets up to 6-311++G(2df,2pd). TD-DFT overestimates excitation energies considerably, while CIS tends to underestimate them slightly. TD-DFT does seem to capture the trend in excitation energy vs. size for the smaller peroxy radicals. Conformation and configuration strongly affect the excitation energies of the peroxy radicals from isoprene. CIS calculations indicate that the intramolecular OH--O hydrogen bonds, present in the ground state of some peroxy radicals from isoprene, are weakened or broken in the excited state, while TD-DFT calculations suggest they are retained.
Keywords:peroxy radicals  electronic spectroscopy  time‐dependent density functional theory  isoprene  hydrogen bonding
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号