首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Stabilized Low Order Finite Element Method for Three Dimensional Elasticity Problems
Authors:Gwanghyun Jo & Do Y Kwak
Abstract:We introduce a low order finite element method for three dimensional elasticity problems. We extend Kouhia-Stenberg element 12] by using two nonconforming components and one conforming component, adding stabilizing terms to the associated bilinear form to ensure the discrete Korn's inequality. Using the second Strang's lemma, we show that our scheme has optimal convergence rates in $L^2$ and piecewise $H^1$-norms even when Poisson ratio $\nu$ approaches $1/2$. Even though some efforts have been made to design a low order method for three dimensional problems in 11,16], their method uses some higher degree basis functions. Our scheme is the first true low order method. We provide three numerical examples which support our analysis. We compute two examples having analytic solutions. We observe the optimal $L^2$ and $H^1$ errors for many different choices of Poisson ratios including the nearly incompressible cases. In the last example, we simulate the driven cavity problem. Our scheme shows non-locking phenomena for the driven cavity problems also.
Keywords:Elasticity equation  low order finite element  Kouhia-Stenberg element  locking free  Korn's inequality  
点击此处可从《高等学校计算数学学报(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号