首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fast calculation of excited-state potentials for rare-gas diatomic molecules: Ne2 and Ar2
Authors:Michael Berman  Uzi Kaldor
Institution:Chemistry Department, Tel-Aviv University, Tel Aviv, Israel
Abstract:A fast method for obtaining excited-state potentials of rare-gas diatomic molecules is described. Two types of excited orbitals are used: molecular orbitals calculated in the field of a singly charged molecular ion, and atomic orbitals (properly symmetrized) obtained in a similar atomic system. The RPA equations are solved within the manifold of excitations from the highest occupied orbital in each symmetry to the lowest excited orbital of either type in each symmetry. A simple model for estimating the dynamic correlation correction to excitation (and ionization) energies is given. Applications to excited states of Ne2(1,3Σ+g, u, 1,3Πg, u) and Ar2(1,3Σ+g, u) are described. Two-electron integral transformations involve only three orbitals of each symmetry, and the RPA matrices are four-dimensional. The computational effort required for all excited-state potentials adds less than one-tenths (in terms of computer time) to the effort involved in the preliminary ground state Hartree—Fock calculations. The resulting potentials compare favorably with more elaborate CI calculations and give good agreement with spectroscopic and scattering data. Potential curves for the molecular ions are also given.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号