首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT-based studies on the Jahn-Teller effect in 3d hexacyanometalates with orbitally degenerate ground states
Authors:Atanasov Mihial  Comba Peter  Daul Claude A  Hauser Andreas
Institution:Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bontchev Str. Bl.11, 1113 Sofia, Bulgaria. mihail.atanasov@aci.uni-heidelberg.de
Abstract:The topology of the ground-state potential energy surface of M(CN)(6) with orbitally degenerate (2)T(2g) (M = Ti(III) (t(2g)(1)), Fe(III) and Mn(II) (both low-spin t(2g)(5))) and (3)T(1g) ground states (M = V(III) (t(2g)(2)), Mn(III) and Cr(II) (both low-spin t(2g)(4))) has been studied with linear and quadratic Jahn-Teller coupling models in the five-dimensional space of the epsilon(g) and tau(2g) octahedral vibrations (Tgsymbol: see text](epsilon(g)+tau(2g)) Jahn-Teller coupling problem (T(g) = (2)T(2g), (3)T(1g))). A procedure is proposed to give access to all vibronic coupling parameters from geometry optimization with density functional theory (DFT) and the energies of a restricted number of Slater determinants, derived from electron replacements within the t(2g)(1,5) or t(2g)(2,4) ground-state electronic configurations. The results show that coupling to the tau(2g) bending mode is dominant and leads to a stabilization of D(3d) structures (absolute minima on the ground-state potential energy surface) for all complexes considered, except for Ti(CN)(6)](3-), where the minimum is of D(4h) symmetry. The Jahn-Teller stabilization energies for the D3d minima are found to increase in the order of increasing CN-M pi back-donation (Ti(III) < V(III) < Mn(III) < Fe(III) < Mn(II) < Cr(II)). With the angular overlap model and bonding parameters derived from angular distortions, which correspond to the stable D(3d) minima, the effect of configuration interaction and spin-orbit coupling on the ground-state potential energy surface is explored. This approach is used to correlate Jahn-Teller distortion parameters with structures from X-ray diffraction data. Jahn-Teller coupling to trigonal modes is also used to reinterpret the anisotropy of magnetic susceptibilities and g tensors of Fe(CN)(6)](3-), and the (3)T(1g) ground-state splitting of Mn(CN)(6)](3-), deduced from near-IR spectra. The implications of the pseudo Jahn-Teller coupling due to t(2g)-e(g) orbital mixing via the trigonal modes (tau(2g)) and the effect of the dynamic Jahn-Teller coupling on the magnetic susceptibilities and g tensors of Fe(CN)(6)](3-) are also addressed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号