首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nucleic acid structural engineering using pyrene-functionalized 2'-amino-alpha-L-LNA monomers and abasic sites
Authors:Kumar T Santhosh  Madsen Andreas S  Østergaard Michael E  Wengel Jesper  Hrdlicka Patrick J
Institution:Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense M, Denmark.
Abstract:Oligonucleotides (ONs) modified with a 2'-N-(pyren-1-yl)acetyl-2'-amino-alpha-L-LNA thymine monomer Y flanked on the 3'-side by an abasic site Phi (i.e., YPhi-unit) exhibit unprecedented increases in thermal affinity (DeltaT(m) values) toward target strands containing abasic sites (DeltaT(m) per YPhi unit >+33.0 degrees C in 9-mer duplexes relative to unmodified ONs). Biophysical studies along with force field calculations suggest that the conformationally locked 2-oxo-5-azabicyclo2.2.1]heptane skeleton of monomer Y, in concert with the short rigid acetyl linker, efficiently forces the thymine and pyrene moieties to adopt an interplanar distance of approximately 3.4 A. This precisely positions the pyrene moiety in the duplex core void formed by abasic sites (Phi:Phi pair) for optimal pi-pi overlap. Duplexes with multiple YPhi: APhi units separated by one base pair are tolerated extraordinarily well, as exemplified by a 13-mer duplex containing four separated YPhi: APhi units (8 abasic sites distributed over 13 "base pairs"), which exhibit a thermal denaturation temperature of 60.5 degrees C. The YPhi probes display up to 16-fold increases in fluorescence intensity at 380 nm upon hybridization with abasic target strands, whereby self-assembly of these complex architectures can be easily monitored. This study underlines the potential of N2'-functionalized 2'-amino-alpha-L-LNA as building blocks in nucleic acid based diagnostics and nanomaterial engineering.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号