首页 | 本学科首页   官方微博 | 高级检索  
     


Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications
Authors:Heller M J  Forster A H  Tu E
Affiliation:Nanogen Inc., Pacific Center Court, San Diego, CA 92121, USA. mheller@nanogen.com
Abstract:Microelectronic DNA chip devices that contain planar arrays of microelectrodes have been developed for multiplex DNA hybridization and a variety of genomic research and DNA diagnostic applications. These devices are able to produce almost any desired electric field configuration on their surface. This ability to produce well-defined electric fields allows charged molecules (DNA, RNA, proteins, enzymes, antibodies, nanobeads, and even micron scale semiconductor devices) to be electrophoretically transported to or from any microlocation on the planar surface of the device. Of key importance to the device function is the permeation layer which overcoats the microelectrodes. The permeation layer is generally a porous hydrogel material that allows water molecules and small ions (Na+, CI-, etc.) to freely contact the microelectrode surface, but impedes the transport of the larger analytes (oligonucleotides, DNA, RNA, proteins, etc.). The permeation layer prevents the destruction of DNA at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization reactions, and serves as a porous support structure for attaching DNA probes and other molecules to the array. In order to maintain rapid transport of DNA molecules, facilitate hybridization, and work within constrained current and voltage ranges, low conductance buffers and various electronic pulsing scenarios have also been developed. These active microelectronic array devices allow electrophoretic fields to be used to carry out accelerated DNA hybridization reactions and to improve selectivity for single nucleotide polymorphism (SNP), short tandem repeat (STR), and point mutation analysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号