首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrafast dynamics of heat flow across molecules
Authors:Zhaohui Wang  David G Cahill  Jeffrey A Carter  Yee Kan Koh  Alexei Lagutchev  Nak-Hyun Seong  Dana D Dlott  
Institution:aSchool of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;bDepartment of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Abstract:An ultrafast flash thermal conductance apparatus is used to study heat flow through aliphatic and aromatic molecules arranged in self-assembled monolayers (SAMs). The apparatus consists of a thin metal film which can be flash-heated by many hundreds of degrees in not, vert, similar1 ps using a femtosecond pulse. Heat flow from the metal surface into the SAM molecules is detected using vibrational sum-frequency generation (SFG) spectroscopy. The SAMs studied were alkanethiolates (AT) ranging from C6 to C24, benzenethiolate (BT) and benzylmercaptide (BMT). SFG in the CH-stretch region selectively probes transitions of the terminal methyl groups of AT and the CH moiety at the 4-position of the phenyl ring of BT and BMT (opposite the thiolate-surface bond). The SFG signal is sensitive to temperature-jump induced thermal disorder of the SAM and also to vibrational frequency shifts induced by the changing intramolecular vibrational populations. The SFG probe functions as a thermometer, and this thermometer is not, vert, similar1.5 Å thick with a response time of not, vert, similar1 ps. In the AT chains, a study of the length dependence is used to determine the rate heat flows across the metal–SAM interface and the rate of heat flow through the AT chains. The interface thermal conductance is 220 GW m−2 s−1. The AT molecular conductance is 50 pW K−1 or 0.3 eV s−1 K−1. Heat flow through the AT chains is ballistic with a velocity of 1 km/s. Heat flow into BMT is slower than in BT because BMT has one additional methylene linker group. The BT and BMT structures evidence a thermally-initiated surface rearrangement occurring in a few tens of picoseconds. These SAMs are strained and the phenyl rings cannot adopt the most stable staggered herringbone structure. After the T-jump, the SAM molecules have enough freedom to relax into more favorable configurations.
Keywords:Heat transport  Interfaces  Molecular monolayers  Femtosecond spectroscopy  Thermal conductance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号