首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dimensional crossover tuned by pressure in layered magnetic NiPS_3
Abstract:The physical properties of most 2D materials are highly dependent on the nature of their interlayer interaction. In-depth studies of the interlayer interaction are beneficial to the understanding of the physical properties of 2D materials and permit the development of related devices. Layered magnetic NiPS_3 has unique magnetic and electronic properties. The electronic band structure and corresponding magnetic state of NiPS_3 are expected to be sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied by the collapse of magnetic order during the 2D-3D structural crossover induced by hydrostatic pressure. A two-stage phase transition from a monoclinic(C2/m) to a trigonal(P31m)lattice is identified via ab initio simulations and confirmed via high-pressure X-ray diffraction and Raman scattering; this transition corresponds to a layer-by-layer slip mechanism along the a-axis. Temperature-dependent resistance measurements and room temperature infrared spectroscopy under different pressures demonstrate that the insulator-metal transition and the collapse of the magnetic order occur at ~20 GPa, which is confirmed by low-temperature Raman scattering measurements and theoretical calculations. These results establish a strong correlation between the structural change, electric transport, and magnetic phase transition and expand our understanding of layered magnetic materials. Moreover, the structural transition caused by the interlayer displacement has significance for designing similar devices at ambient pressure.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号