首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamics of industrially-important,enzyme-catalyzed reactions
Authors:Yadu B. Tewari
Affiliation:Chemical Thermodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899.
Abstract:The thermodynamics of 10 industrially-important, enzyme-catalyzed reactions are examined. The reactions discussed are: the conversions of penicillin G to 6-amino-penicillinic acid using the enzyme penicillin acylase; starch to glucose using amylases; glucose to fructose using glucose (xylose) isomerase; cellulose to glucose using cellulase; fumaric acid and ammonia to L-aspartic acid using L-aspartase; transcinnamic acid and ammonia to L-phenylalanine using L-phenylalanine ammonia lyase; L-histidine to urocanic acid and ammonia using L-histidine ammonia lyase; lactose to glucose and galactose using lactase; and the reactions catalyzed by amino acylases and proteases. The selection of these processes was based on the economic value of the products and their intrinsic industrial importance. The available thermodynamic properties, such as equilibrium constants, Gibbs energies (delta G degrees), enthalphies (delta H degrees), and heat capacity changes (delta Cp degrees) of these enzyme-catalyzed reactions, are reviewed and summarized. Recommendations are made for future research in this area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号