首页 | 本学科首页   官方微博 | 高级检索  
     


A transition solvent strategy to print polymer:fullerene films using halogen-free solvents for solar cell applications
Affiliation:1. Department of Physics, National University of Singapore, Lower Kent Ridge Road, S117551, Singapore;2. Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, S117543, Singapore;3. Department of Electrical and Computer Engineering, National University of Singapore, Lower Kent Ridge Road, S117576, Singapore;4. Solar Energy Research Institute of Singapore, National University of Singapore, Engineering Drive 1, S117574, Singapore
Abstract:Inkjet printing is a mask-less non-contact deposition technique that is potentially suited for prototyping and manufacturing of thin-film polymer organic semiconductor devices from digital images. However new strategies are needed to achieve films with good macromorphology (i.e., high-fidelity footprint and uniform cross-section) and nanomorphology on unstructured substrates using a conventional ink-jet. Here we report a new transition solvent strategy to provide the desired film macromorphology and ultrafine nanomorphology in regioregular poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) model films, without using chlorinated solvents. This strategy employs a good volatile solvent in combination with a miscible poor solvent that is much less volatile, which is the reverse of the usual low−high boiling-point solvent method. The good solvent suppresses premature aggregation in the ink head. Its removal by evaporation on the substrate leaves the poor solvent that triggers early π-stacking ordering and/or gelation of the polymer matrix that immobilizes the printed fluid on the substrate, suppressing both contact-line depinning and evaporation-induced solvent flow effects. The resultant donor–acceptor nanomorphology is further improved by vacuum drying at an optimal rate that avoids bubble formation. We have systematically characterized P3HT:PCBM films deposited with different solvents and platen temperatures to identify key macro- and nano-morphology determining processes. High-performance printed P3HT:PCBM solar cells were realized. These findings are applicable also to other printing and coating techniques based on low-viscosity inks.
Keywords:Organic solar cells  Ink-jet printing  Morphology  Solvent effects  Processing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号