首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacophore modelling,atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity
Authors:S. Misra  M. Saini  H. Ojha  D. Sharma
Affiliation:1. Division of Metabolic Cell Signaling Research, Institute of Nuclear Medicine and Allied Sciences, Delhi, India;2. Division of Radio Protective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
Abstract:COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r2 = 0.9924, q2 = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.
Keywords:COX-2  mPGES-1  pharmacophore  QSAR  cancer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号