首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyphosphate ions encapsulated in oxothiomolybdate rings: synthesis, structure, and behavior in solution
Authors:Cadot Emmanuel  Pouet Marie-José  Robert-Labarre Chantal  du Peloux Charlotte  Marrot Jérôme  Sécheresse Francis
Institution:Institut Lavoisier, IREM, UMR CNRS 8637, Université de Versailles Saint Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France. cadot@chimie.uvsq.fr
Abstract:Cyclic oxothiomolybdates containing polyphosphate ions were prepared by simple reactions in aqueous medium of the corresponding polyphosphate ions and the cyclic precursor K(2)I(2)Mo(10)S(10)O(10)(OH)(10)(OH(2))(5).15H(2)O. K(5)Cl(P(2)O(7)]Mo(12)S(12)O(12)(OH)(12)(H(2)O)(4)].22H(2)O (1) was isolated from concentrated chloride solution (2.5 mol.L(-1)). 1 reveals a remarkable complex containing two different substrates encapsulated in a dodecanuclear ring, a H-bonded Cl(-) ion, and a covalently bonded P(2)O(7)] group. The chloride ion in 1 can be selectively removed for a monohydrogenophosphate group yielding K(6)(HPO(4))(P(2)O(7))Mo(12)S(12)O(12)(OH)(12)(H(2)O)(2)].19H(2)O (2), a mixed species containing a P(2)O(7)] and a HPO(4)] group. The substitution is accompanied by a significant change of the ring, which adopts a "pear-shape" conformation. In the presence of triphosphate ion, the "heart-shaped" decanuclear ring Rb(3)(H(2)P(3)O(10))Mo(10)S(10)O(10)(OH)(10)].17.5H(2)O (3) is formed containing a linear P(3)O(10)] group intimately embedded in the inorganic cyclic host. The three compounds were structurally characterized by single-crystal X-ray diffraction. The behaviors of 1, 2, and 3 in solution were studied by (31)P NMR. Variable temperature experiments, supported by a two-dimensional COSY (31)P experiment, revealed that the supramolecular interaction existing between the chloride ion and the ring in solid 1 is maintained in solution. Nevertheless, 1 remains labile, and successive equilibria were evidenced and interpreted as an ion-pair association involving a halide ion (Cl, Br, or I), responsible for the conformational change of the P(2)O(7)] group within the cavity. The influence of the nature of the halide guest (Cl(-), Br(-), and I(-)) on the successive equilibria was studied, and the thermodynamic constant related to the postulated equilibrium was determined. The stability of the supramolecular association decreases in the order Cl > Br > I. In solution, a phosphate exchange is observed for 2 while for 3 the absence of temperature dependence of the (31)P NMR spectrum confirms the conformation of the host-guest system is blocked. Elemental analysis and infrared characterizations are also supplied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号