首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of entropy and autosolvation in dimerization and complexation of C60 by Zn7 metallocavitands
Authors:Frischmann Peter D  Mehr S Hessam M  Patrick Brian O  Lelj Francesco  MacLachlan Mark J
Institution:Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1.
Abstract:The supramolecular chemistry of bowl-shaped heptazinc metallocavitands templated by Schiff base macrocycles has been investigated. Dimerization thermodynamics were probed by (1)H NMR spectroscopy in benzene-d(6), toluene-d(8), and p-xylene-d(10) and revealed the process to be entropy-driven and enthalpy-opposed in each solvent. Trends in the experimentally determined enthalpy and entropy values are related to the thermodynamics of solvent autosolvation, solvent molecules being released from the monomeric metallocavitand cavity into the bulk solvent upon dimerization. The relationship established between experimentally measured dimerization thermodynamics and autosolvation data successfully predicts the absence of dimerization in CH(2)Cl(2) and CHCl(3) and was used to estimate the number of solvent molecules interacting with the monomeric metallocavitand in solution. Host-guest interactions between heptazinc metallocavitands and fullerene C(60) have also been investigated. Interestingly, metallocavitand-C(60) interactions are only observed in solvents that facilitate entropy-driven dimerization suggesting entropy and solvent autosolvation may be important in explaining concave-convex interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号