首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development and validation of HPLC methods for enantioseparation of mirtazapine enantiomers at analytical and semipreparative scale using polysaccharide chiral stationary phases
Authors:Zong-De Zhai  Yan-Ping Shi and Ting Wang
Institution:

aKey Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, The Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, PR China

bDepartment of Neurosurgery, The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, PR China

Abstract:Novel HPLC methods were developed for the analytical and semipreparative resolution of new antidepressant drug mirtazapine enantiomers. At analytical scale, the separation of the mirtazapine enantiomers was investigated using both cellulose and amylose tris(3,5-dimethylphenylcarbamate) (CDMPC and ADMPC) chiral stationary phases under normal-phases and polar organic modes. Good baseline enantioseparation was achieved using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases under both normal-phases and polar organic modes. Furthermore, the elution order of mirtazapine enantiomic pairs was found reversed by changing the stationary phase from the amylose-based ADMPC–CSPs to its cellulose-based counterpart, CDMPC–CSPs. The validation of the analytical methods including linearity, limit of detection (LOD), limit of quantification (LOQ), recovery and precision, together with the semipreparative resolution of mirtazapine racemate were carried out using cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases and methanol as mobile phase without any basic additives under polar organic mode. At analytical scale, the elution times of both enantiomers were less than 6 min at normal temperature and 1.0 ml/min, with the separation factor (greek small letter alpha) 1.99 and the resolution factor (Rs) 3.56. Then, the analytical methods were scaled up to semipreparative loading to obtain small quantities of both mirtazapine enantiomers. At semipreparative scale, about 16 mg/h enantiomers could be isolated and elution times of both enantiomers were less than 10 min at 2.0 ml/min. To increase the throughput, the technique of boxcar injections was used. One enantiomer ((?)-(R)-mirtazapine) was isolated with purity of >99.9% e.e. and >98.0% yield and another ((+)-(S)-mirtazapine) was isolated with purity of >97.0% e.e. and >99.0% yield. In addition, optical rotation and circular dichroism (CD) spectroscopy of both mirtazapine enantiomers isolated were also investigated.
Keywords:Enantioseparation  Polysaccharide carbamate phase  Semipreparative HPLC  Optical rotation  Circular dichroism  Mirtazapine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号