首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m)
Authors:Yaghmur Anan  de Campo Liliana  Salentinig Stefan  Sagalowicz Laurent  Leser Martin E  Glatter Otto
Institution:Institute of Chemistry, University of Graz, Graz, Austria.
Abstract:In our recent work, we reported on the effect of varying temperature and solubilizing tetradecane (TC) on the structural transitions observed in dispersed particles based on the monolinolein (MLO)-water-TC system. At a given temperature, the addition of TC induces a transition of the internal structure from the bicontinuous cubic phase, Pn3m, to the reversed hexagonal, H2, and to the isotropic liquid phase (water-in-oil (W/O) microemulsions). Our present study focuses on the discovery of a Fd3m phase (reversed discontinuous micellar cubic), which is formed in the MLO-water-TC system at a specific TC/MLO weight ratio. It is situated between the H2 and the isotropic liquid phase (W/O microemulsion). Remarkably, it is not found in the absence of TC by increasing the temperature. The Fd3m structure was investigated in detail by means of small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The present work proves that the structural transformation in the dispersed particles from H2 (hexosomes) to the W/O microemulsion system (emulsified microemulsion (EME)) is indirect and it occurs gradually via an emulsified intermediate phase. Specifically, in addition to the nanostructured aqueous dispersions described above, we present new TC-loaded aqueous dispersions with a confined intermediate phase, which is a discontinuous micellar cubic phase of the symmetry Fd3m. We denoted this type of emulsified particles as "micellar cubosomes".
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号