首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A HIGH RESOLUTION FLUORESCENCE DECAY AND DEPOLARIZATION STUDY OF HUMAN PLASMA APOLIPOPROTEINS
Authors:Mary C  Chang†  Graham R  Fleming  Angelo M  Scanu Nien-chuC  Yang
Institution:Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;Departments of Medicine and Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
Abstract:Abstract— Human plasma apolipoprotein A-I (apoA-I) and apolipoprotein C-I (apoC-I) were investigated by time-resolved fluorescence decay and depolarization. The tryptophyl fluorescence of apoA-I undergoes a double-exponential decay with lifetimes of 1.07 and 3.43 ns which remain unchanged over the range of apoA-I concentration studied.
The time-resolved fluorescence of both native and denatured forms of apoC-I exhibits an unusual tryptophyl fluorescence decay that was best fit to a triexponential function with lifetimes at 3.7 ± 0.2, 1.1 ± 0.1 and 0.1 ns at 2°C. The native and denatured forms of apoC-I had rotational correlation times of 1.42 and 1.19 ns at 20°C respectively. A shorter rotational correlation time associated with the internal tryptophan motions was not observed or resolved.
The decay of tryptophyl fluorescence in apoC-I/DPPC/cholesterol complex at 20°C is also triexponential with lifetimes at 4.94, 1.28 and 0.21 ns, which are longer than those of the uncomplexed forms. Two rotational correlation times of 28.32 and 0.59 ns at 20°C were resolved by fluorescence depolarization measurements. The long rotational time remained constant with temperatures above 30°C. Also, the temperature dependence of the order parameter, S2, resembled a lipid phase transition curve with a transition midpoint at 38°C. The tryptophan and thus apoC-I are found to be affected by the bulk changes in the lipid.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号