首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings
Authors:Katrina M Roberts  David M Lavenson  Emilio J Tozzi  Michael J McCarthy and Tina Jeoh
Institution:(1) Biological and Agricultural Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;(2) Chemical and Materials Science Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;(3) Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
Abstract:Water is essential to the hydrolysis and conversion of lignocellulosic materials as it is both the medium through which enzymes diffuse to and products diffuse away from the reaction sites and a reactant in the hydrolysis reaction of the glycosidic bonds within the polysaccharides. However, little is known about how water interactions with the biomass change with solids content and how this affects mass transfer resistances during high solids saccharification. Nuclear magnetic resonance spectroscopy measurements of the T 2 relaxation times of water in cellulose suspensions were used to demonstrate that increases in solids content led to increases in the physical constraint of water in the suspensions. Moreover, the addition of either glucose (a monosaccharide which end-product inhibits β-glucosidase) or mannose (a stereoisomer of glucose that does not end-product inhibit β-glucosidase) further increased water constraint at all solids contents. The presence of either monosaccharide constrained water and inhibited saccharification rates to similar extents. This observation, coupled with the absence of cellobiose produced in the reactions, demonstrated that the presence of soluble sugars can negatively impact saccharification efficiency simply by increasing water constraint in cellulose suspensions before impacting enzyme activity. Furthermore, results are presented that demonstrate strong correlations between water constraint in cellulose suspensions with diffusivities of enzyme and monosaccharides within the system. These results are discussed in the context of increased viscosity of the aqueous fraction in the suspension resulting from increased water-cellulose and water-solute interactions that ultimately increases diffusion resistances and decreases saccharification rates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号