首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal ion-binding properties of 1-methyl-4-aminobenzimidazole (=9-methyl-1,3-dideazaadenine) and 1,4-dimethylbenzimidazole (=6,9-dimethyl-1,3-dideazapurine). quantification of the steric effect of the 6-amino group on metal ion binding at the N7 site of the adenine residue
Authors:Kapinos L E  Holý A  Günter J  Sigel H
Institution:Institute of Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
Abstract:The stability constants of the 1:1 complexes formed between Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) (=M(2+)) and 1-methyl-4-aminobenzimidazole (MABI) or 1,4-dimethylbenzimidazole (DMBI) were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.5 M, NaNO(3)). Some of the stability constants were also measured by UV spectrophotometry. The acidity constants of the species H(2)(MABI)(2+) and H(DMBI)(+) were determined by the same methods, some twice. Comparison of the stability constants of the M(MABI)(2+) and M(DMBI)(2+) complexes with those calculated from log versus p straight-line plots, which were established previously for sterically unhindered benzimidazole-type ligands (=L), reveals that the stabilities of the M(MABI)(2+) and M(DMBI)(2+) complexes are significantly reduced due to steric effects of the C4 substituents on metal ion binding at N3. This effect is more pronounced in the M(DMBI)(2+) complexes. Considering the steric equivalence of methyl and (noncoordinating) amino groups (as they occur in adenines), it is concluded that the same extent of steric inhibition by the (C6)NH(2) group is to be expected on metal ion binding at N7 with adenine derivatives. The basicity of the amino group in MABI is significantly higher than in its corresponding adenine derivative. Indeed, it is concluded that in the M(MABI)(2+) complexes chelate formation involving the amino group occurs to some extent. The formation degrees of these "closed" species are calculated; they vary for the complexes of Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) between about 50 and 90%. The stability of the M(MABI)(2+) and M(DMBI)(2+) complexes with the alkaline earth ions is very low but unaffected by the C4 substituent; this probably indicates that in these instances outersphere complexes (with a water molecule between N3 and the metal ion) are formed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号