首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermoelasticity of a regularly inhomogeneous curved layer with wavy surfaces
Authors:A L Kalamkarov  B A Kudryavtsev  V Z Parton
Abstract:A curved inhomogeneous anisotropic layer of variable thickness is considered that has wavy surfaces. It is assumed that the elastic, thermo-physical characteristics of the layer material and the shape of its upper and lower surfaces are periodic in structure with a single periodicity cell (PC). The period of the structure is here comparable in magnitude with the layer thickness, which is assumed to be much less than the other linear dimensions of the body and the radius of curvature of its middle surface.On the basis of a general scheme for taking the average of processes in periodic media /1, 2/, a method is developed which enables a transition to be made from a spatial quasistatic thermoelasticity problem to a system of thermoelasticity equations for an average shell whose effective and thermophysical coefficients are determined from the solution of local problems in a PC. Results obtained for the static theory of elasticity in /3/ are used. The heat conduction problem is averaged to determine the temperature components occurring in the equation of motion.The model constructed enables thermoelastic strains, stresses and the temperature distribution to be obtained in shells and plates of composite or porous materials with a different kind of reinforcement of the periodic structure (waffle, ribbed, corrugated) in reinforced and grid-like shells and plates. In the limiting case of “smooth” surfaces and a homogeneous material, the thermoelasticity equations are obtained for shallow anisotropic shells and the heat conduction equations of anisotropic shells assuming a linear temperature distribution law over the thickness.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号