首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles
Institution:1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China;2. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;3. Division of Mechanical Engineering, Alfred University, Alfred, NY 14802, USA;4. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
Abstract:The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine the chitin organizations in the fruit fly, Drosophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interestingly many of the homologous anatomical structures from diverse arthropods exhibit similar patterns of chitin organization suggesting that a common set of parameters, govern chitin organization.
Keywords:Chitin organization  Cuticle  Cicada  Drosophila  SEM  Insect
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号