首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence Photobleaching of ALA-induced Protoporphyrin IX during Photodynamic Therapy of Normal Hairless Mouse Skin: The Effect of Light Dose and Irradiance and the Resulting Biological Effect
Authors:Dominic J Robinson  Henriëtte S de  Bruijn  Nynke van der  Veen  Mark R Stringer  Stanley B Brown  Willem M Star
Institution:Centre for Photobiology and Photodynamic Therapy, Research School of Medicine: Medical Physics, University of Leeds, UK;Dr. Daniel Den Hoed Cancer Centre, Department of Clinical Physics, PDT Research Laboratory, Rotterdam, the Netherlands;Centre for Photobiology and Photodynamic Therapy, Department of Biochemistry and Molecular Biology, University of Leeds, UK
Abstract:The photobleaching of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) was investigated during superficial photodynamic therapy (PDT) in normal skin of the SKH HRt hairless mouse. The effects of light dose and fluence rate on the dynamics and magnitude of photobleaching and on the corresponding PDT-induced dam-age were examined. The results show that the PDT damage cannot be predicted by the total light dose. Photo-bleaching was monitored over a wide range of initial PpIX fluorescence intensities. The rate of PpIX photo-bleaching is not a simple function of fluence rate but is dependent on the initial concentration of sensitizer. Also, at high fluence rates (50–150 mW/cm2, 514 nm) oxygen depletion is shown to have a significant effect. The rate of photobleaching with respect to light dose and the corresponding PDT damage both increase with decreasing fluence rate. We therefore suggest that the definition of a bleaching dose as the light dose that causes a 1/e reduction in fluorescence signal is insufficient to describe the dynamics of photobleaching and PDT-induced dam-age. We have detected the formation of PpIX photoproducts during the initial period of irradiation that were themselves subsequently photobleached. In the absence of oxygen, PpIX and its photoproducts are not photo-bleached. We present a method of calculating a therapeutic dose delivered during superficial PDT that demonstrates a strong correlation with PDT damage.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号