首页 | 本学科首页   官方微博 | 高级检索  
     


Linear stability of viscous incompressible flow in a circular viscoelastic tube
Authors:Ganiev  R. F.  Malykh  Yu. B.  Ukrainskii  L. E.
Abstract:Flow stability in rigid tubes has been the subject of much research [1]. The overwhelming majority of authors of both theoretical and experimental studies now conclude that Poiseuille flow in a circular rigid tube is linearly stable. However, real tubes all possess elastic properties, the influence of which has not been investigated in such detail. For certain selected values of the parameters characterizing an elastic tube it has been shown that with respect to infinitesimal axisymmetric perturbations Poiseuille flow in the tube can be unstable [2]. In this case boundary conditions that did not take into account the fairly large velocity gradient of the undisturbed flow near the tube wall were used. The present paper reports the results of a numerical investigation of the linear stability of Poiseuille flow in a circular elastic tube with respect to three-dimensional perturbations in the form of traveling waves propagated along the system (azimuthal perturbation modes with numbers 0, 1, 2, 3, 4, and 5 are considered). It is shown that the elastic properties of the tube can have an important influence on the linear stability spectrum. In the case of axisymmetric perturbations it is possible to detect an instability which, at Reynolds numbers of more than 200, exists only for tubes whose modulus of elasticity is substantially less than that of materials in common use. The instability to perturbations of the second azimuthal mode is different in character, inasmuch as at Reynolds numbers greater than unity it occurs in stiffer tubes. Moreover, as the Reynolds number increases it can also occur in tubes of greater stiffness. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–134, November–December, 1986.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号