首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing Fe-Based Metal-Organic Frameworks through Ligand Conformation Regulation for Efficient Dye Adsorption and C2H2/CO2 Separation
Authors:Xiurong Zhang  Weidong Fan  Weifeng Jiang  Yue Li  Yutong Wang  Mingyue Fu  Prof. Daofeng Sun
Abstract:Regulating the structure of metal-organic frameworks (MOFs) by adjusting the ligands reasonably is expected to enhance the interaction of MOFs on special molecules/ions, which has significant application value for the selective adsorption of guest molecules. Herein, two tricarboxylic ligands H3L−Cl and H3L−NH2 were designed and synthesized based on the ligand H3TTCA by replacing part of the benzene rings with C=C bonds and modifying the chlorine and amino groups on the 4-position of the benzene ring. Two 3D Fe-MOFs ( UPC-60-Cl and UPC-60-NH2 ) with the new topology types were constructed. As the C=C bonds of the ligands have flexible torsion angles, UPC-60-Cl features three types of irregular 2D channels, while UPC-60-NH2 has a cage with two types of windows on the surface. The synergistic effect of unique channels and modification of functional groups endows UPC-60-Cl and UPC-60-NH2 with high adsorption capacity for organic dyes. Compound UPC-60-Cl shows high adsorption capacity for CV (147.2 mg g−1), RHB (100.3 mg g−1), and MO (220.9 mg g−1), whereas UPC-60-NH2 exhibits selective adsorption of MO (158.7 mg g−1). Meanwhile, based on the diverse pore structure and modification of active sites, UPC-60-Cl and UPC-60-NH2 show the selective separation of equimolar C2H2/CO2. Therefore, reasonable regulation of organic ligands plays a significant role in guiding the structure diversification and performance improvement of MOFs.
Keywords:dye adsorption  gases separation  ligand conformation regulations  metal-organic frameworks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号