首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Efficient K Ion Storage of M2P2O7/C (M=Fe,Co, Ni) Anode Derived from Organic-Inorganic Phosphate Precursors
Authors:Yibo Zhang  Prof Yuying Zheng  Prof Hongbo Geng  Dr Yang Yang  Dr Minghui Ye  Dr Yufei Zhang  Prof Cheng Chao Li
Institution:1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China;2. School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500 China
Abstract:Metal phosphates have been widely explored in lithium ion batteries and sodium ion batteries owing to high theoretical capacities, mild toxicity and low cost. However, their potassium ion battery applications are less reported due to the limited conductivity and the slow diffusion kinetics. Considering these drawbacks, novel structured M2P2O7/C (M=Fe, Co, Ni) nanoflake composites are prepared through an organic-phosphors precursor-assisted solvothermal method and a subsequent high temperature annealing process. The designed Co2P2O7/C composite exhibits the highest rate capacity with 502 mAh g?1 at 0.1 A g?1 and good cyclability for 900 cycles at 1 A g?1 and 2 A g?1 when compared with Ni and Fe based composites. The superior electrochemical performance can be attributed to their unique nanoparticle-assembled nanoflake structure, which can afford enough active sites for K+ intercalation. In addition, the robust pyrophosphate crystal structure and the in situ formed carbon composition also have positive effects on enhancing the long-term cycling performance and the electrode's conductivity. Finally, this organic-phosphors precursor induced simple approach can be applied for easy fabrication of other pyrophosphate/carbon hybrids as advanced electrodes.
Keywords:hydrothermal synthesis  metal-organic hybrid  nanoflake  potassium ion battery  pyrophosphates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号