首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Active Bicomponent Nanoparticle Assembly with Temporal,Microstructural, and Functional Control
Authors:Dr Shikha Dhiman  Dr Akanksha Singh  Prof Subi J George
Institution:Supramolecular Chemistry Laboratory, School of Advanced Materials (SAMat) and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064 India
Abstract:Transient supramolecular self-assembly has evolved as a tool to create temporally programmable smart materials. Yet, so far single-component self-assembly has been mostly explored. In contrast, multicomponent self-assembly provides an opportunity to create unique nanostructures exhibiting complex functional outcomes, newer and different than individual components. Even two-component can result in multiple organizations, such as self-sorted domains or co-assembled heterostructures, can occur, thus making it highly complex to predict and reversibly modulate these microstructures. In this study, we attempted to create active bicomponent nanoparticle assemblies of orthogonally pH-responsive-group-functionalized gold and cadmium selenide nanoparticles with temporal microstructural control on their composition (self-sorted or co-assembly) in order to harvest their emergent transient photocatalytic activity by coupling to temporal changes in pH. Moving towards multicomponent systems can deliver next level control in terms of structural and functional outcomes of supramolecular systems.
Keywords:fuel-driven  heterostructures  nonequilibrium processes  supramolecular chemistry  transient
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号