首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the interaction of the turbulent dual-jet and acoustic propagation
Affiliation:School of Metallurgy, Northeastern University, Shenyang 110819, China
Abstract:In order to study the interaction between two independent jets, a three-dimensional (3D) transient mathematical model is developed to investigate the flow field and acoustic properties of the two-stream jets. The results are compared with those of the single-stream jet at Mach number 0.9 and Reynolds number 3600. The large eddy simulation (LES) with dynamic Smagorinsky sub-grid scale (SGS) approach is used to simulate the turbulent jet flow structure. The acoustic field is evaluated by the Ffowcs Williams-Hawkings (FW-H) integral equation. Considering the compressibility of high-speed gas jets, the density-based explicit formulation is adopted to solve the governing equations. Meanwhile, the viscosity is approximated by using the Sutherland kinetic theory. The predicted flow characteristics as well as the acoustic properties show that they are in good agreement with the existing experimental and numerical results under the same flow conditions available in the literature. The results indicate that the merging phenomenon of the dual-jet is triggered by the deflection mechanism of the Coanda effect, which sequentially introduces additional complexity and instability of flow structure. One of the main factors affecting the dual-jet merging is the aperture ratio, which has a direct influence on the potential core and surrounding flow fluctuation. The analysis on the noise pollution reveals that the potential core plays a fundamental role in noise emission while the additional mixing noise makes less contribution than the single jet noise. The overall sound pressure level (OASPL) profiles have a directive property, suggesting an approximate 25° deflection from the streamwise direction, however, shifting toward lateral direction of about 10° to 15° in the dual-jet. The conclusion obtained in this study can provide valuable data to guide the development of manufacturing-green technology in the multi-jet applications.
Keywords:dual-jet  jet entrainment  acoustic characteristic  Coanda effect  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号