首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Institution:1.College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China
Abstract:This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid-solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries.
Keywords:multi-phase transformation  microstructure  multi-phase-field method  grain orientation  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号